skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Chao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 24, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. Free, publicly-accessible full text available June 10, 2026
  4. Free, publicly-accessible full text available June 10, 2026
  5. Free, publicly-accessible full text available April 24, 2026
  6. Free, publicly-accessible full text available April 24, 2026
  7. Constructing k-nearest neighbor (kNN) graphs is a fundamental component in many machine learning and scientific computing applications. Despite its prevalence, efficiently building all-nearest-neighbor graphs at scale on distributed heterogeneous HPC systems remains challenging, especially for large sparse non-integer datasets. We introduce optimizations for algorithms based on forests of random projection trees. Our novel GPU kernels for batched, within leaf, exact searches achieve 1.18× speedup over sparse reference kernels with less peak memory, and up to 19× speedup over CPU for memory-intensive problems. Our library,PyRKNN, implements distributed randomized projection forests for approximate kNN search. Optimizations to reduce and hide communication overhead allow us to achieve 5× speedup, in per iteration performance, relative to GOFMM (another projection tree, MPI-based kNN library), for a 64M 128d dataset on 1,024 processes. On a single-node we achieve speedup over FAISS-GPU for dense datasets and up to 10× speedup over CPU-only libraries.PyRKNNuniquely supports distributed memory kNN graph construction for both dense and sparse coordinates on CPU and GPU accelerators. 
    more » « less
    Free, publicly-accessible full text available September 30, 2026
  8. Free, publicly-accessible full text available February 28, 2026
  9. Uncertainty Quantification (UQ) is vital for decision makers as it offers insights into the potential reliability of data and model, enabling more informed and risk-aware decision-making. Graphical models, capable of representing data with complex dependencies, are widely used across domains. Existing sampling-based UQ methods are unbiased but cannot guarantee convergence and are time-consuming on large-scale graphs. There are fast UQ methods for graphical models with closed-form solutions and convergence guarantee but with uncertainty underestimation. We propose LinUProp, a UQ method that utilizes a novel linear propagation of uncertainty to model uncertainty among related nodes additively instead of multiplicatively, to offer linear scalability, guaranteed convergence, and closed-form solutions without underestimating uncertainty. Theoretically, we decompose the expected prediction error of the graphical model and prove that the uncertainty computed by LinUProp is the generalized variance component of the decomposition. Experimentally, we demonstrate that LinUProp is consistent with the sampling-based method but with linear scalability and fast convergence. Moreover, LinUProp outperforms competitors in uncertainty-based active learning on four real-world graph datasets, achieving higher accuracy with a lower labeling budget. 
    more » « less
    Free, publicly-accessible full text available December 8, 2025